Matrix Polynomials

albertnammas

مشرف بالجامعة / درّة كتاب العرب
طاقم الإدارة


I. Gohberg, P. Lancaster, and L. Rodman, "Matrix Polynomials"
So-ety for Ind-strial and Ap-ied Mat-matic | 2009 | ISBN: 0898716810, 012287160X | 433 pages | PDF | 10,4 MB


This book provides a comprehensive treatment of the theory of polynomials in a complex variable with matrix coefficients. Basic matrix theory can be viewed as the study of the special case of polynomials of first degree; the theory developed in Matrix Polynomials is a natural extension of this case to polynomials of higher degree. It has applications in many areas, such as differential equations, systems theory, the Wiener Hopf technique, mechanics and vibrations, and numerical analysis. Although there have been significant advances in some quarters, this work remains the only systematic development of the theory of matrix polynomials.

Audience: The book is appropriate for students, instructors, and researchers in linear algebra, operator theory, differential equations, systems theory, and numerical analysis. Its contents are accessible to readers who have had undergraduate-level courses in linear algebra and complex analysis.


Contents: Preface to the Classics Edition; Preface; Errata; Introduction; Part I: Monic Matrix Polynomials: Chapter 1: Linearization and Standard Pairs; Chapter 2: Representation of Monic Matrix Polynomials; Chapter 3: Multiplication and Divisability; Chapter 4: Spectral Divisors and Canonical Factorization; Chapter 5: Perturbation and Stability of Divisors; Chapter 6: Extension Problems; Part II: Nonmonic Matrix Polynomials: Chapter 7: Spectral Properties and Representations; Chapter 8: Applications to Differential and Difference Equations; Chapter 9: Least Common Multiples and Greatest Common Divisors of Matrix Polynomials; Part III: Self-Adjoint Matrix Polynomials: Chapter 10: General Theory; Chapter 11: Factorization of Self-Adjoint Matrix Polynomials; Chapter 12: Further Analysis of the Sign Characteristic; Chapter 13: Quadratic Self-Adjoint Polynomials; Part IV: Supplementary Chapters in Linear Algebra: Chapter S1: The Smith Form and Related Problems; Chapter S2: The Matrix Equation AX XB = C; Chapter S3: One-Sided and Generalized Inverses; Chapter S4: Stable Invariant Subspaces; Chapter S5: Indefinite Scalar Product Spaces; Chapter S6: Analytic Matrix Functions; References; List of Notation and Conventions; Index


رابط التحميل
[hide]
كود:
http://bookzz.org/dl/1021695/73a62c
[/hide]

 
التعديل الأخير بواسطة المشرف:
أتى الكتاب في وقته..
أظن أني سأستفيد منه
أشكرك جدا ً جدا ً مشرفنا الرائع
جاري تحميل الكتاب
 
أتى الكتاب في وقته..
أظن أني سأستفيد منه
أشكرك جدا ً جدا ً مشرفنا الرائع
جاري تحميل الكتاب
أتمنى لك الاستفادة منة والتوفيق دائما" من عند الله عز وجل
اشكرك زهرتنا المبدعه التي يفوح اريجها بكل ارجاء المنتدى
:gift:
 
يا اخوان رابط الكتاب لا يعمل ارجو تحميل الكتاب ووضعة في رابط مباشر
ضروري جدا جدا
بارك الله فيكم
 
يا اخوان رابط الكتاب لا يعمل ارجو تحميل الكتاب ووضعة في رابط مباشر
ضروري جدا جدا
بارك الله فيكم
أخي العزيز الروابط تعمل 100%
بالتوفيق

:gift:
 
اخي الكريم اضغط على الرابط التالي
uploading.com
ثم اضغط على
free download
ثم انتظر الى ان ينهي العداد التنازلي 59 ثانية
ثم اضغط على
downland
بالتوفيق

 
اخي الكريم اضغط على الرابط التالي


uploading.com
ثم اضغط على
free download
ثم انتظر الى ان ينهي العداد التنازلي 59 ثانية
ثم اضغط على
downland
بالتوفيق

اعملت كل الخطوات
للا سف لم احملة
شكلة الكتاب مرفوع من الموقع
ارجو ارسال الكتاب مباشرة
 
في هذا اليوم المبارك

ما لايشكر الناس لا يشكر الله
الف شكر يا اخي albertnammas علي اولا هذا الاهتمام
وعلي ارسالك لي الكتاب
بارك الله فيك
 
في هذا اليوم المبارك

ما لايشكر الناس لا يشكر الله
الف شكر يا اخي albertnammas علي اولا هذا الاهتمام
وعلي ارسالك لي الكتاب
بارك الله فيك
العفو اخي الكريم
بالتوفيق

:gift:

 


I. Gohberg, P. Lancaster, and L. Rodman, "Matrix Polynomials"
So-ety for Ind-strial and Ap-ied Mat-matic | 2009 | ISBN: 0898716810, 012287160X | 433 pages | PDF | 10,4 MB


This book provides a comprehensive treatment of the theory of polynomials in a complex variable with matrix coefficients. Basic matrix theory can be viewed as the study of the special case of polynomials of first degree; the theory developed in Matrix Polynomials is a natural extension of this case to polynomials of higher degree. It has applications in many areas, such as differential equations, systems theory, the Wiener Hopf technique, mechanics and vibrations, and numerical analysis. Although there have been significant advances in some quarters, this work remains the only systematic development of the theory of matrix polynomials.

Audience: The book is appropriate for students, instructors, and researchers in linear algebra, operator theory, differential equations, systems theory, and numerical analysis. Its contents are accessible to readers who have had undergraduate-level courses in linear algebra and complex analysis.


Contents: Preface to the Classics Edition; Preface; Errata; Introduction; Part I: Monic Matrix Polynomials: Chapter 1: Linearization and Standard Pairs; Chapter 2: Representation of Monic Matrix Polynomials; Chapter 3: Multiplication and Divisability; Chapter 4: Spectral Divisors and Canonical Factorization; Chapter 5: Perturbation and Stability of Divisors; Chapter 6: Extension Problems; Part II: Nonmonic Matrix Polynomials: Chapter 7: Spectral Properties and Representations; Chapter 8: Applications to Differential and Difference Equations; Chapter 9: Least Common Multiples and Greatest Common Divisors of Matrix Polynomials; Part III: Self-Adjoint Matrix Polynomials: Chapter 10: General Theory; Chapter 11: Factorization of Self-Adjoint Matrix Polynomials; Chapter 12: Further Analysis of the Sign Characteristic; Chapter 13: Quadratic Self-Adjoint Polynomials; Part IV: Supplementary Chapters in Linear Algebra: Chapter S1: The Smith Form and Related Problems; Chapter S2: The Matrix Equation AX XB = C; Chapter S3: One-Sided and Generalized Inverses; Chapter S4: Stable Invariant Subspaces; Chapter S5: Indefinite Scalar Product Spaces; Chapter S6: Analytic Matrix Functions; References; List of Notation and Conventions; Index


uploading.com


filesonic.com
 
عودة
أعلى