D. ter Haa
1 edition (1971) | ISBN: 080167268 | 200 pages | Djvu | 2,8 Mb
CONTENTS
Chapter 1: NEWTONIAN MECHANICS
1. Newton's Laws
2. Central Fields of Force
3. Systems of Particles
1. Constraints
2. D' Alembert's Principle
3. Lagrange's Equations of Motion
4. Cyclic Coordinates
5. Non-Holonomic Constraints; Velocity-Dependent Potentials
6. Conservation Laws
Chapter 2: THE LAGRANGIAN EQUATIONS OF MOTION
Chapter 3: SMALL VffiRATIONS
1. The Theory of Small Vibrations
2. The Double Pendulum
3. Molecular Vibrations
4. The Normal Vibrations of a One-Dimensional Crystal
5. Oscillations Around an Equilibrium Motion
Chapter 4: DYNAMICS OF RIGID BODIES
1. Introduction
2. The Euler Equations
3. Rotating Frames of Reference; The Coriolis Force
Chapter 5: THE CANONICAL EQUATIONS OF MOTION
1. The Hamiltonian Equations of Motion
2. Canonical Transformations
3. Poisson and Lagrangian Brackets; Infinitesimal Transformations
4. Variational Principles; Time and Energy as Canonically Conjugate Variables
Chapter 6: HAMILTON-JACOBI THEORY
1. The Hamilton-Jacobi Equation
2. Action and Angle Variables.
3. Adiabatic Invariants
Chapter 7: PERTURBATION THEORY
1. The Anharmonic Oscillator
2. Canonical Perturbation Theory
3. Zeeman and Stark Effect of the Hydrogen Atom
Chapter 8: CONTINUOUS SYSTEMS
1. The Lagrangian and Hamiltonian Formalism for Continua.
2. Sound Waves; The Maxwell Equations
BIBLIOGRAPHY
PROBLEMS
INDEX
GLOSSARY OF SYMBOLS
Download
Mirror
1 edition (1971) | ISBN: 080167268 | 200 pages | Djvu | 2,8 Mb
CONTENTS
Chapter 1: NEWTONIAN MECHANICS
1. Newton's Laws
2. Central Fields of Force
3. Systems of Particles
1. Constraints
2. D' Alembert's Principle
3. Lagrange's Equations of Motion
4. Cyclic Coordinates
5. Non-Holonomic Constraints; Velocity-Dependent Potentials
6. Conservation Laws
Chapter 2: THE LAGRANGIAN EQUATIONS OF MOTION
Chapter 3: SMALL VffiRATIONS
1. The Theory of Small Vibrations
2. The Double Pendulum
3. Molecular Vibrations
4. The Normal Vibrations of a One-Dimensional Crystal
5. Oscillations Around an Equilibrium Motion
Chapter 4: DYNAMICS OF RIGID BODIES
1. Introduction
2. The Euler Equations
3. Rotating Frames of Reference; The Coriolis Force
Chapter 5: THE CANONICAL EQUATIONS OF MOTION
1. The Hamiltonian Equations of Motion
2. Canonical Transformations
3. Poisson and Lagrangian Brackets; Infinitesimal Transformations
4. Variational Principles; Time and Energy as Canonically Conjugate Variables
Chapter 6: HAMILTON-JACOBI THEORY
1. The Hamilton-Jacobi Equation
2. Action and Angle Variables.
3. Adiabatic Invariants
Chapter 7: PERTURBATION THEORY
1. The Anharmonic Oscillator
2. Canonical Perturbation Theory
3. Zeeman and Stark Effect of the Hydrogen Atom
Chapter 8: CONTINUOUS SYSTEMS
1. The Lagrangian and Hamiltonian Formalism for Continua.
2. Sound Waves; The Maxwell Equations
BIBLIOGRAPHY
PROBLEMS
INDEX
GLOSSARY OF SYMBOLS
Download
Mirror