التحليل ارجو حل المساعدة في حل هذه المسائل في الcomplex analysis

اطلب المساعدة في حل هذه الاسئلة
1- Suppose f is an entire function and
|f(z)|≤A+B|z|k
For all z in C , where A>0 , B>0. Prove that f must be a polynomial


Suppose f ,g belonge to H(U) ,U={z:|z|<1} and neither f nor g has a zero in U 2

if (f`/f)(1/n)= (g`/g)(1/n) ,n=2,3,4,5 Find other relation between f and g.


Suppose f belonge to H(U) , ¯U ={z:|z|<1 } in Ω, is aregion ,|f(z) |>2 if |z|=1 and f(0)=1 Must f 3 have a zero in U ? Why?
 
عودة
أعلى