MEDICAL IMAGING PHYSICS Fourth Edition
* Author: William R. Hendee
Writing and rewriting a text such as Medical Imaging Physics over several editions presents two challenges. The first is to keep the information fresh and relevant. This is a particular challenge in medical imaging, because the field is evolving so rapidly. The third edition of this text was published in 1992, just 10 short years ago. Yet in that text no mention was made of topics such as photodiode or direct conversion digital x-ray imagers; digital mammography; digital fluoroscopy; power Doppler ultrasound; functional magnetic resonance imaging; elastography; or helical CT scanning. This is just a partial list of imaging approaches that must be covered today in any text of imaging physics. Being involved in a dynamic and rapidly changing field is one of the more enjoyable aspects of medical imaging. But it places heavy demands on authors trying to provide a text that keeps up with the field.
The second challenge is no less demanding than the first. That challenge is to keep the text current with the changing culture of how people learn, as well as with the educational experience and pedagogical expectations of students. These have changed remarkably over the 30 years since this book first appeared. For maximum effect, information today must be packaged in various ways, including self-contained segments, illustrations, highlights, sidebars, and examples and problems. In addition, it must be presented in a manner that facilitates learning and helps students evaluate their progress. Making the information correct and complete is only half the battle; the other half is using a format that helps the student assimilate and apply it. The latter challenge reflects not only today’slearning environment, but also the tremendous amount of information that must be assimilated by any student of medical imaging.
link
http://rapidshare.com/files/117631822/book21.rar
* Author: William R. Hendee
Writing and rewriting a text such as Medical Imaging Physics over several editions presents two challenges. The first is to keep the information fresh and relevant. This is a particular challenge in medical imaging, because the field is evolving so rapidly. The third edition of this text was published in 1992, just 10 short years ago. Yet in that text no mention was made of topics such as photodiode or direct conversion digital x-ray imagers; digital mammography; digital fluoroscopy; power Doppler ultrasound; functional magnetic resonance imaging; elastography; or helical CT scanning. This is just a partial list of imaging approaches that must be covered today in any text of imaging physics. Being involved in a dynamic and rapidly changing field is one of the more enjoyable aspects of medical imaging. But it places heavy demands on authors trying to provide a text that keeps up with the field.
The second challenge is no less demanding than the first. That challenge is to keep the text current with the changing culture of how people learn, as well as with the educational experience and pedagogical expectations of students. These have changed remarkably over the 30 years since this book first appeared. For maximum effect, information today must be packaged in various ways, including self-contained segments, illustrations, highlights, sidebars, and examples and problems. In addition, it must be presented in a manner that facilitates learning and helps students evaluate their progress. Making the information correct and complete is only half the battle; the other half is using a format that helps the student assimilate and apply it. The latter challenge reflects not only today’slearning environment, but also the tremendous amount of information that must be assimilated by any student of medical imaging.
link
http://rapidshare.com/files/117631822/book21.rar