السلام عليكم
Mathematical Methods in Quantum Mechanics: With Applications to Schrodinger Operations
Mathematical Methods in Quantum Mechanics: With Applications to Schrodinger Operations (Graduate Studies in Mathematics) By Gerald Teschi
Publisher: American Mathematical Society (15 April 2009) | 302 Pages | ISBN: 0821846604 | PDF | 1.4 MB
Quantum mechanics and the theory of operators on Hilbert space have been deeply linked since their beginnings in the early twentieth century. States of a quantum system correspond to certain elements of the configuration space and observables correspond to certain operators on the space. This book is a brief, but self-contained, introduction to the mathematical methods of quantum mechanics, with a view towards applications to Schrodinger operators. Part 1 of the book is a concise introduction to the spectral theory of unbounded operators. Only those topics that will be needed for later applications are covered. The spectral theorem is a central topic in this approach and is introduced at an early stage. Part 2 starts with the free Schrodinger equation and computes the free resolvent and time evolution. Position, momentum, and angular momentum are discussed via algebraic methods. Various mathematical methods are developed, which are then used to compute the spectrum of the hydrogen atom. Further topics include the nondegeneracy of the ground state, spectra of atoms, and scattering theory. This book serves as a self-contained introduction to spectral theory of unbounded operators in Hilbert space with full proofs and minimal prerequisites: Only a solid knowledge of advanced calculus and a one-semester introduction to complex analysis are required. In particular, no functional analysis and no Lebesgue integration theory are assumed. It develops the mathematical tools necessary to prove some key results in nonrelativistic quantum mechanics. "Mathematical Methods in Quantum Mechanics" is intended for beginning graduate students in both mathematics and physics and provides a solid foundation for reading more advanced books and current research literature. It is well suited for self-study and includes numerous exercises
http://uploading.com/files/XUFHS22I/mathematical_methods_in_quantum_mechanics.rar.html
======
http://www.megaupload.com/?d=U68KC1ZN
==========
http://depositfiles.com/en/files/q9h41t574
Mathematical Methods in Quantum Mechanics: With Applications to Schrodinger Operations
Mathematical Methods in Quantum Mechanics: With Applications to Schrodinger Operations (Graduate Studies in Mathematics) By Gerald Teschi
Publisher: American Mathematical Society (15 April 2009) | 302 Pages | ISBN: 0821846604 | PDF | 1.4 MB
Quantum mechanics and the theory of operators on Hilbert space have been deeply linked since their beginnings in the early twentieth century. States of a quantum system correspond to certain elements of the configuration space and observables correspond to certain operators on the space. This book is a brief, but self-contained, introduction to the mathematical methods of quantum mechanics, with a view towards applications to Schrodinger operators. Part 1 of the book is a concise introduction to the spectral theory of unbounded operators. Only those topics that will be needed for later applications are covered. The spectral theorem is a central topic in this approach and is introduced at an early stage. Part 2 starts with the free Schrodinger equation and computes the free resolvent and time evolution. Position, momentum, and angular momentum are discussed via algebraic methods. Various mathematical methods are developed, which are then used to compute the spectrum of the hydrogen atom. Further topics include the nondegeneracy of the ground state, spectra of atoms, and scattering theory. This book serves as a self-contained introduction to spectral theory of unbounded operators in Hilbert space with full proofs and minimal prerequisites: Only a solid knowledge of advanced calculus and a one-semester introduction to complex analysis are required. In particular, no functional analysis and no Lebesgue integration theory are assumed. It develops the mathematical tools necessary to prove some key results in nonrelativistic quantum mechanics. "Mathematical Methods in Quantum Mechanics" is intended for beginning graduate students in both mathematics and physics and provides a solid foundation for reading more advanced books and current research literature. It is well suited for self-study and includes numerous exercises
http://uploading.com/files/XUFHS22I/mathematical_methods_in_quantum_mechanics.rar.html
======
http://www.megaupload.com/?d=U68KC1ZN
==========
http://depositfiles.com/en/files/q9h41t574