by James W Brown, R V.Churchill
Publisher: Mcgraw-Hill College
Number Of Pages: 320
Publication Date: 1993-01-01
ISBN-10 / ASIN: 0070082022
ISBN-13 / EAN: 9780070082021
Binding: Hardcover
Number Of Pages: 320
Publication Date: 1993-01-01
ISBN-10 / ASIN: 0070082022
ISBN-13 / EAN: 9780070082021
Binding: Hardcover
Book Description:
This is an introductory treatment of Fourier series and their applications to boundary value problems in partial differential equations of engineering and physics It is designed for students who have completed a first course in ordinary differential equations and the equivalent of a term of advanced calculus. In order that the book be accessible to as many students as possible, there are footnotes referring to texts which give proofs of the more delicate results in advanced calculus that are occasionally needed. The physical applications, explained in some detail, are kept on a fairly elementary level. The first objective of the book is to introduce the concept of orthogonal sets of functions and representations of arbitrary functions in series of functions from such sets. Representations of functions by Fourier series involving sine and cosine functions are given special attention. Fourier integral representations and expansions in series of Bessel functions and Legendre polynomials are also treated. The second objective is a clear presentation of the classical method of separations of variables used in solving boundary value problems with the aid of those representations. Some attention is given to the verification of solutions and to uniqueness of solutions, for the method cannot be presented properly without such considerations. Other methods are treated in the authors' book Complex Variables and Applications, and in Professor Churchill's book, Operational Mathematics
This is an introductory treatment of Fourier series and their applications to boundary value problems in partial differential equations of engineering and physics It is designed for students who have completed a first course in ordinary differential equations and the equivalent of a term of advanced calculus. In order that the book be accessible to as many students as possible, there are footnotes referring to texts which give proofs of the more delicate results in advanced calculus that are occasionally needed. The physical applications, explained in some detail, are kept on a fairly elementary level. The first objective of the book is to introduce the concept of orthogonal sets of functions and representations of arbitrary functions in series of functions from such sets. Representations of functions by Fourier series involving sine and cosine functions are given special attention. Fourier integral representations and expansions in series of Bessel functions and Legendre polynomials are also treated. The second objective is a clear presentation of the classical method of separations of variables used in solving boundary value problems with the aid of those representations. Some attention is given to the verification of solutions and to uniqueness of solutions, for the method cannot be presented properly without such considerations. Other methods are treated in the authors' book Complex Variables and Applications, and in Professor Churchill's book, Operational Mathematics
The Fourier Transform & Its Applications
By Ronald N. Bracewell
By Ronald N. Bracewell
Publisher: McGraw-Hill Science
Number Of Pages: 640
Publication Date: 1999-06-08
ISBN-10 / ASIN: 0073039381
ISBN-13 / EAN: 9780073039381
Binding: Hardcover
Number Of Pages: 640
Publication Date: 1999-06-08
ISBN-10 / ASIN: 0073039381
ISBN-13 / EAN: 9780073039381
Binding: Hardcover
Product Description:
This text is designed for use in a senior undergraduate or graduate level course in Fourier Transforms. This text differs from many other fourier transform books in its emphasis on applications. Bracewell applies mathematical concepts to the physical world throughout this text, equipping students to think about the world and physics in terms of transforms. The pedagogy in this classic text is excellent. The author has included such tools as the pictorial dictionary of transforms and bibliographic references. In addition, there are many excellent problems throughout this book, which are more than mathematical exercises, often requiring students to think in terms of specific situations or asking for educated opinions. To aid students further, discussions of many of the problems can be found at the end of the book.
This text is designed for use in a senior undergraduate or graduate level course in Fourier Transforms. This text differs from many other fourier transform books in its emphasis on applications. Bracewell applies mathematical concepts to the physical world throughout this text, equipping students to think about the world and physics in terms of transforms. The pedagogy in this classic text is excellent. The author has included such tools as the pictorial dictionary of transforms and bibliographic references. In addition, there are many excellent problems throughout this book, which are more than mathematical exercises, often requiring students to think in terms of specific situations or asking for educated opinions. To aid students further, discussions of many of the problems can be found at the end of the book.
Fourier Analysis: An Introduction
(Princeton Lectures in Analysis, Volume 1)
By Elias M. Stein, Rami Shakarchi
(Princeton Lectures in Analysis, Volume 1)
By Elias M. Stein, Rami Shakarchi
Publisher: Princeton University Press
Number Of Pages: 320
Publication Date: 2003-03-17
ISBN-10 / ASIN: 069111384X
ISBN-13 / EAN: 9780691113845
Binding: Hardcover
Number Of Pages: 320
Publication Date: 2003-03-17
ISBN-10 / ASIN: 069111384X
ISBN-13 / EAN: 9780691113845
Binding: Hardcover
Product Description:
This first volume, a three-part introduction to the subject, is intended for students with a beginning knowledge of mathematical analysis who are motivated to discover the ideas that shape Fourier analysis. It begins with the simple conviction that Fourier arrived at in the early nineteenth century when studying problems in the physical sciences--that an arbitrary function can be written as an infinite sum of the most basic trigonometric functions.
The first part implements this idea in terms of notions of convergence and summability of Fourier series, while highlighting applications such as the isoperimetric inequality and equidistribution. The second part deals with the Fourier transform and its applications to classical partial differential equations and the Radon transform; a clear introduction to the subject serves to avoid technical difficulties. The book closes with Fourier theory for finite abelian groups, which is applied to prime numbers in arithmetic progression.
In organizing their exposition, the authors have carefully balanced an emphasis on key conceptual insights against the need to provide the technical underpinnings of rigorous analysis. Students of mathematics, physics, engineering and other sciences will find the theory and applications covered in this volume to be of real interest.
The Princeton Lectures in Analysis represents a sustained effort to introduce the core areas of mathematical analysis while also illustrating the organic unity between them. Numerous examples and applications throughout its four planned volumes, of which Fourier Analysis is the first, highlight the far-reaching consequences of certain ideas in analysis to other fields of mathematics and a variety of sciences. Stein and Shakarchi move from an introduction addressing Fourier series and integrals to in-depth considerations of complex analysis; measure and integration theory, and Hilbert spaces; and, finally, further topics such as functional analysis, distributions and elements of probability theory.
The first part implements this idea in terms of notions of convergence and summability of Fourier series, while highlighting applications such as the isoperimetric inequality and equidistribution. The second part deals with the Fourier transform and its applications to classical partial differential equations and the Radon transform; a clear introduction to the subject serves to avoid technical difficulties. The book closes with Fourier theory for finite abelian groups, which is applied to prime numbers in arithmetic progression.
In organizing their exposition, the authors have carefully balanced an emphasis on key conceptual insights against the need to provide the technical underpinnings of rigorous analysis. Students of mathematics, physics, engineering and other sciences will find the theory and applications covered in this volume to be of real interest.
The Princeton Lectures in Analysis represents a sustained effort to introduce the core areas of mathematical analysis while also illustrating the organic unity between them. Numerous examples and applications throughout its four planned volumes, of which Fourier Analysis is the first, highlight the far-reaching consequences of certain ideas in analysis to other fields of mathematics and a variety of sciences. Stein and Shakarchi move from an introduction addressing Fourier series and integrals to in-depth considerations of complex analysis; measure and integration theory, and Hilbert spaces; and, finally, further topics such as functional analysis, distributions and elements of probability theory.