مــنــى
New Member
السؤال الأول
Let v1 ,v2 and v3 be vectors in a vector space V and T:V→R³ linear transformation for which T(v1) =(1,-1,3) T(v2)=(0,3,2) T(v3)=(-3,1,2)
Show that if {v1,v2} is linearly independent and v3 does not lie in span{v1,v2} then {v1,v2,v3} is linearly independent
======================================================
السؤال الثاني:
If T:V3(R)→V3(R) is defined as T(α,β,γ)={α+5β+2γ, α+2β+γ,-α+β}
Prove T is linear transformation
=======================================================
السؤال الثالث:
If {u,v,w} is linearly independent over K-space V
Prove that {u+v-3w , u+3v-w ,v+w}is linearly dependent over K
======================================================
سامحوني على هالغلبة
بس محتجاهم ضروري جداً
Let v1 ,v2 and v3 be vectors in a vector space V and T:V→R³ linear transformation for which T(v1) =(1,-1,3) T(v2)=(0,3,2) T(v3)=(-3,1,2)
Show that if {v1,v2} is linearly independent and v3 does not lie in span{v1,v2} then {v1,v2,v3} is linearly independent
======================================================
السؤال الثاني:
If T:V3(R)→V3(R) is defined as T(α,β,γ)={α+5β+2γ, α+2β+γ,-α+β}
Prove T is linear transformation
=======================================================
السؤال الثالث:
If {u,v,w} is linearly independent over K-space V
Prove that {u+v-3w , u+3v-w ,v+w}is linearly dependent over K
======================================================
سامحوني على هالغلبة
بس محتجاهم ضروري جداً